Tag Archives: SARS-CoV-2

In-silico study of volatile compounds and COVID-19

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 469-485, May-June 2022.

Original Article

Volatile compounds from Phyla scaberrima (Juss. ex Pers.) Moldenke and Dysphania ambrosioides (L.) Mosyakin & Clemants as possible SARS-CoV-2 protease inhibitors: Identification and in-silico study

[Compuestos volátiles de Phyla scaberrima (Juss. ex Pers.) Moldenke y Dysphania ambrosioides (L.) Mosyakin & Clemants como posibles inhibidores de proteasas de SARS-CoV-2: Identificación y estudio in-silico]

Neyder Contreras-Puentes1*, Manuel Salas-Moreno2,3, Lina Mosquera-Chaverra2, Leonomir Córdoba-Tovar4, Antistio Alviz-Amador5

1GINUMED, Medicine, Corporation University Rafael Nuñez, Cartagena D.T y C, Colombia.

2Faculty of Naturals Sciences, Biology Department, Biosistematic Research Group, Technological University of Chocó, Quibdó, Colombia.

3Analytical Chemistry and Biomedicine Group. Exacts and Natural Sciences Faculty. University of Cartagena. Cartagena, Colombia.

4Research Group Natural Resources and Environmental Toxicology, Technological University of Chocó, Quibdó, Colombia.

 5Pharmacology and Therapeutics Group, University of Cartagena, Cartagena D.T y C., Colombia.

*E-mail: neyder.contreras@curnvirtual.edu.co


Context: COVID-19 is a pandemic that has affected the entire population, characterized by multisystemic involvement. With around 130 million cases of infection and more than 2.5 million deaths globally. However, the development of a low-efficacy treatment has led to the study of natural products as possible therapeutic alternatives against SARS-CoV-2.

Aims: To identify volatile compounds present in two plants in the Colombian Pacific and carry out in-silico studies to search for promising inhibitory molecules against SARS-CoV-2 proteases.

Methods: This research carried out the identification of metabolites of two plants identified in the Colombian Pacific, called P. scaberrima (Juss. ex Pers.) Moldenke y D. ambrosioides (L.) Mosyakin & Clemants. Ethanolic extracts were obtained by rotary-evaporation and determinated by GC-MS. Subsequently, in-silico studies were carried out by molecular docking against Mpro and PLpro using Autodock-vina 1.1. Also, a prediction of ADMET properties using SwissADME and GUSAR-Online server was performed.

Results: Thus, 15 volatile compounds with similarities greater than 85% were identified from both extracts, mostly sesquiterpenic and monoterpenic compounds. The compounds that showed the highest affinity against Mpro were α-amorphene and phytol for PLpro. Likewise, these were contrasted with co-crystallized molecules such as boceprevir and VIR2-251 as control structures. Finally, the predictions of ADMET properties showed values consistent with the literature.

Conclusions: Therefore, the follow-up of in-silico studies with these plants from Colombian pacific are considered as possible tools in the search for active molecules against proteases linked to virus.

Keywords: Dysphania ambrosioides; GC-MS/MS; molecular docking; Phyla scaberrima; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png


Contexto: COVID-19 es una pandemia que ha afectado a toda la población mundial, caracterizada por compromisos multisistémicos. Con alrededor de 130 millones de casos de infección y más de 2,5 millones de muertes en todo el mundo. Sin embargo, el desarrollo de un tratamiento de baja eficacia ha llevado al estudio de productos naturales como posibles alternativas terapéuticas frente al SARS-CoV-2.

Objetivos: Identificar compuestos volátiles presentes en dos plantas del Pacifico colombiano y realizar estudios in-silico para la búsqueda de promisorias moléculas inhibidoras contra proteasas de SARS-CoV-2.

Métodos: En esta investigación se realizó la identificación de metabolitos de dos plantas identificadas en el Pacífico colombiano, llamadas P. scaberrima (Juss. ex Pers.) Moldenke y D. ambrosioides (L.) Mosyakin & ClemantsSe obtuvieron extractos etanólicos, preconcentrados con evaporación rotatoria y se determinaron por GC-MS. Posteriormente, se realizaron estudios in-silico mediante acoplamiento molecular contra Mpro y PLpro utilizando Autodock-vina. Además, prediciendo las propiedades de ADMET mediante SwissADME y GUSAR-Online.

Resultados: Se identificaron 15 compuestos volátiles con similitudes superiores al 85% de ambos extractos, en su mayoría compuestos sesquiterpénicos y monoterpénicos. Los compuestos que mostraron la mayor afinidad contra Mpro fue α-amorfeno y fitol para PLpro. Asimismo, se contrastaron con moléculas co-cristalizadas como boceprevir y VIR2-251 como estructuras control. Finalmente, en las predicciones de propiedades ADMET mostraron valores consistentes con la literatura.

Conclusiones: Se consideró el seguimiento de estudios in-silico con estas plantas del Pacífico colombiano como posibles herramientas en la búsqueda de moléculas activas frente a proteasas ligadas al virus.

Palabras Clave: acoplamiento molecular; Dysphania ambrosioides; GC-MS/MS; Phyla scaberrima; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Contreras-Puentes N, Salas-Moreno MH, Mosquera-Chaverra L, Córdoba-Tovar L, Alvíz-Amador AA (2022) Volatile compounds from Phyla scaberrima (Juss. ex Pers.) Moldenke y Dysphania ambrosioides (L.) Mosyakin & Clemants as possible SARS-CoV-2 protease inhibitors: Identification and in-silico study. J Pharm Pharmacogn Res 10(3): 469–485.

Adorjan B, Buchbauer G (2010) Biological properties of essential oils: An updated review. Flavour Fragr J 25(6): 407–426.

Al-Badani RN, da Silva JKR, Mansi I, Muharam BA, Setzer WN, Awadh Ali NA (2017) Chemical composition and biological activity of Lavandula pubescens essential oil from Yemen. J Essent Oil-Bearing Plants 20(2): 509–515.

Alrasheid AA, Babiker MY, Awad TA (2021) Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. Silico Pharmacol 9(1): 10.

Anson B, Chapman M, Lendy E, Pshenychnyi S, D’Aquila R, Satchell K, Mesecar A (2020) Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs. Res Sq [Preprint]. https://doi.org/10.21203/rs.3.rs-26344/v1

Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R (2020) COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 28(5): 1153–1161.

Astani A, Reichling J, Schnitzler P (2011) Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Altern Med 2011: 253643.

Baldissera MD, Souza CF, De Matos AFIM, Doleski PH, Baldisserotto B, Da Silva AS, Monteiro SG (2018) Blood-brain barrier breakdown, memory impairment and neurotoxicity caused in mice submitted to orally treatment with thymol. Environ Toxicol Pharmacol 62: 114–119.

Carvalho e Silva MAG, Carneiro LP, Castelo Branco MFG, Barros EML, Lemos SI, de Barros TL, Marques RB (2016) Anti-Inflammatory effect of mastruz (Chenopodium ambrosioides) extract in respiratory distress syndrome. Int J Pharm Sci Invent 5(5): 34–39.

Compadre CM, Robbins EF, Kinghorn AD (1986) The intensely sweet herb, Lippia dulcis Trev.: Historical uses, field inquiries, and constituents. J Ethnopharmacol 15(1): 89–106.

Corpas-López V, Morillas-Márquez F, Navarro-Moll MC, Merino-Espinosa G, Díaz-Sáez V, Martín-Sánchez J (2015) (-)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J Nat Prod 78(6): 1202–1207.

Da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN (2020) Essential oils as antiviral agents. Potential of essential oils to treat sars−cov−2 infection: An in-silico investigation. Int J Mol Sci 21(10): 3426.

Da Silva MGC, Amorim RNL, Câmara CC, Fontenele Neto JD, Soto-Blanco B (2014) Acute and sub-chronic toxicity of aqueous extracts of chenopodium ambrosioides leaves in rats. J Med Food 17(9): 979–984.

Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics , drug- likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717.

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263: 243–250.

Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E (2020) A comprehensive review of COVID-19 characteristics. Biol Proced Online 22: 19.

Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, Zhao C, Sun H, Huang B, Niu P, Song H, Shi Y, Li X, Tan W, Qi J, Gao GF (2020) Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun 11(1): 4417.

Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R (2020) Phytochemicals as antiviral agents: Recent updates. In: Swamy M. (eds), Plant-derived Bioactives. Singapore: Springer, pp. 279–295.

Granados-Dieseldorff N, Paredes M, Ordóñez M, Martínez V (2013) Phyla dulcis (Trevir.) Moldenke: Descripción de características anatómicas diagnósticas de la droga cruda. Rev Cient Fac Cienc Quím Farm 23(1): 70–80.

Javed H, Meeran MFN, Azimullah S, Eddin LB, Dwivedi VD, Jha NK, Ojha S (2020) α‐Bisabolol, a dietary bioactive phytochemical attenuates dopaminergic neurodegeneration through modulation of oxidative stress, neuroinflammation and apoptosis in rotenone‐induced rat model of Parkinson’s disease. Biomolecules 10(10): 1421.

Kneller DW, Galanie S, Phillips G, O’Neill HM, Coates L, Kovalevsky A (2020) Malleability of the SARS-CoV-2 3CL Mpro active-site cavity facilitates binding of clinical antivirals. Structure 28(12): 1313-1320.e3.

Lagunin A, Zakharov A, Filimonov D, Poroikov V (2011) QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform 30(2–3): 241–250.

Mokni R El, Youssef FS, Jmii H, Khmiri A, Bouazzi S, Jlassi I, Jaidane H, Dhaouadi H, Ashour ML, Hammami S (2019) The essential oil of Tunisian Dysphania ambrosioides and its antimicrobial and antiviral properties. J Essent Oil-Bearing Plants 22(1): 282–294.

Moreno-Murillo B, Quijano-Célis C, Romero R A, Pinod JA (2010) Essential oil from leaves of Lippia dulcis grown in Colombia. Nat Prod Commun 5(4): 613–614.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminform 3: 33.

OECD (2002) Test No. 423: Acute Oral toxicity – Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, Paris: OECD Publishing, https://doi.org/10.1787/9789264071001-en

Ortiz-Rojas LY, Chaves-Bedoya G (2017) Composición fitoquímica del extracto de raíz de Ichthyothere terminalis de dos regiones geográficas de Colombia. Rev Colomb Quím 46(3): 11–16.

Panikar S, Shoba G, Arun M, Sahayarayan JJ, Nanthini AUR, Chinnathambi A, Alharbi SA, Nasif O, Kim H-J (2021) Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health 14(5): 601–610.

Pereira WS, Ribeiro BP, Sousa AIP, Serra ICPB, Mattar NS, Fortes TS, Reis AS, Silva LA, Barroqueiro ESB, Guerra RNM, Nascimento FRF (2010) Evaluation of the subchronic toxicity of oral treatment with Chenopodium ambrosioides in mice. J Ethnopharmacol 127(3): 602–605.

Pérez S, Meckes M, Pérez C, Susunaga A, Zavala MA (2005) Anti-inflammatory activity of Lippia dulcis. J Ethnopharmacol 102(1): 1–4.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605–1612.

Rajabian A, Hosseinzadeh H (2020) Dermatological effects of Nigella sativa and its constituent, thymoquinone: A review. In: Nuts and Seeds in Health and Disease Prevention. Elsevier Inc., pp. 329–355.

Sarrade-Loucheur A, Ro DK, Fauré R, Remaud-Siméon M, Truan G (2020) Synthetic derivatives of (+)- epi-α-bisabolol are formed by mammalian cytochromes p450 expressed in a yeast reconstituted pathway. ACS Synth Biol 9(2): 368–380.

Seadawy MG, Gad AF, Shamel M, Elharty B, Mohamed MF, Elfiky AA, Ahmed A, Zekri ARN (2021) In vitro: Natural compounds (thymol, carvacrol, hesperidine, and thymoquinone) against Sars-Cov2 strain isolated from Egyptian patients. Biomed J Sci Tech Res 34(3): 26750–26757.

Shakeri A, Akhtari J, Soheili V, Taghizadeh SF, Sahebkar A, Shaddel R, Asili J (2017) Identification and biological activity of the volatile compounds of Glycyrrhiza triphylla Fisch. & C.A.Mey. Microb Pathog 109: 39–44.

Sharma AD, Kaur I (2020) Bioactive molecules from eucalyptus essential oil as potential inhibitors of COVID 19 corona virus infection by molecular docking studies. Kragujev J Sci 42: 29–43.

Strickland J, Paris MW, Allen D, Casey W (2019) Approaches to Reducing Animal Use for Acute Toxicity Testing: Retrospective Analyses of Pesticide Data. In: Kojima H., Seidle T., Spielmann H. (eds) Alternatives to Animal Testing. Singapore: Springer, pp. 1-128.

Vimalanathan S, Hudson J (2014) Anti-influenza virus activity of essential oils and vapors. Am J Essent Oils Nat Prod 2(1): 47–53.

WHO (2020) COVID-19 Weekly Epidemiological Update 78. World Heal. Organ. 1–3. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—8-february-2022. [Consulted 22 November 2021].

Zhang L, Lin D, Sun X, Rox K, Hilgenfeld R (2020) X-ray structure of main protease of the novel coronavirus SARS-CoV-2 enables design of α-ketoamide inhibitors. bioRxiv [Preprint]. https://doi.org/10.1101/2020.02.17.952879

Zotti M, Colaianna M, Morgese MG, Tucci P, Schiavone S, Avato P, Trabace L (2013) Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules 18(6): 6161–6172.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Multi-epitope spike glycoprotein vaccine for SARS-CoV-2

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 445-458, May-June 2022.

Original Article

Development of a multi-epitope spike glycoprotein vaccine to combat SARS-CoV-2 using the bioinformatics approach

[Desarrollo de una vacuna de glicoproteína spike multiepítopo para combatir el SARS-CoV-2 utilizando el enfoque bioinformático]

Aamir Shehzad1, Christijogo Sumartono2, Jusak Nugraha3, Helen Susilowati4, Andi Yasmin Wijaya4, Hafiz Ishfaq Ahmad5, Muhammad Kashif6, Wiwiek Tyasningsih7, Fedik Abdul Rantam1,4*

1Virology and Immunology Laboratory, Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.

2Anasthesiology and Reanimation Department, Dr. Soetomo Gerneral Hospital and Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Clinical Pathology Department, Dr. Soetomo Gerneral Hospital and Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.

5Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Punjab, Pakistan.

6Department of Biomedical Engineering, Science and Technology, Universitas Airlangga, Surabaya, Indonesia.

7Bacteriology and Mycology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.

*E-mail: fedik-a-r@fkh.unair.ac.id


Context: The current COVID-19 pandemic has significantly impacted health and socio-economic status worldwide. The only way to combat this situation is to develop an effective vaccine and immunize people around the globe.

Aims: To construct a multi-epitope spike glycoprotein-based vaccine from the SARS-CoV-2 Surabaya isolate using a bioinformatics approach.

Methods: The spike protein was submitted to IEDB, VaxiJen, AllerTOP, and ToxinPred webservers to predict antigenic, non-allergic, non-toxic, B- and T-cell epitopes. To develop a multi-epitope vaccine, an adjuvant cholera toxin B subunit was linked to B-cell and B-cell with T-cell through EAAAK and GPGPG linkers, respectively. The designed vaccine 3D structure development, refinement, and validation were done through PHYRE2, Galaxy Refine, and RAMPAGE webservers. Moreover, the Cluspro-2.0 webserver was used for the molecular docking of the vaccine designed with TLR3. The vaccine+TLR3 complex was docked with Surfactant protein A as a control to validate the docking results. Finally, immune-simulation and in silico cloning of the vaccine were carried out by C-ImmSim webserver and SnapGene software, respectively.

Results: A multi-epitopic vaccine containing B and T-cell was developed using 392 amino acids with a molecular weight of 40825.59 Da. The docking and immunogenicity results of the vaccine met all established parameters for constructing a quality vaccine. Furthermore, the optimized sequence of the vaccine was successfully cloned in expression vector pET 28 a (+) that yielded a colon of 2724 bp.

Conclusions: The vaccine’s immunogenicity demonstrates its effectiveness against SARS-CoV-2 infection. Further confirmatory testing may therefore be performed as soon as possible in the public interest.

Keywords: in silico; public health; SARS-CoV-2; spike protein; TLR3-receptor.


Contexto: La actual pandemia de COVID-19 ha afectado significativamente la salud y el estado socioeconómico en todo el mundo. La única forma de combatir esta situación es desarrollar una vacuna eficaz e inmunizar a las personas en todo el mundo.

Objetivos: Construir una vacuna basada en glicoproteína de pico de múltiples epítopos a partir del aislado SARS-CoV-2 Surabaya utilizando un enfoque bioinformático.

Métodos: La proteína de pico se envió a los servidores web IEDB, VaxiJen, AllerTOP y ToxinPred para predecir epítopos antigénicos, no alérgicos, no tóxicos, de células B y T. Para desarrollar una vacuna multiepítopo, se unió una subunidad B de la toxina del cólera adyuvante a la célula B y una célula B a una célula T a través de conectores EAAAK y GPGPG, respectivamente. El desarrollo, el refinamiento y la validación de la estructura 3D de la vacuna diseñada se realizaron a través de los servidores web PHYRE2, Galaxy Refine y RAMPAGE. Además, se utilizó el servidor web Cluspro-2.0 para el acoplamiento molecular de la vacuna diseñada con TLR3. El complejo vacuna + TLR3 se acopló con la proteína A del tensioactivo como control para validar los resultados del acoplamiento. Finalmente, la inmunosimulación y la clonación in silico de la vacuna se llevaron a cabo mediante el servidor web C-ImmSim y el software SnapGene, respectivamente.

Resultados: Se desarrolló una vacuna multiepitópica que contenía células B y T utilizando 392 aminoácidos con un peso molecular de 40825,59 Da. Los resultados de acoplamiento e inmunogenicidad de la vacuna cumplieron con todos los parámetros establecidos para construir una vacuna de calidad. Además, la secuencia optimizada de la vacuna se clonó con éxito en el vector de expresión pET 28 a (+) que produjo un colon de 2724 pb.

Conclusiones: La inmunogenicidad de la vacuna demuestra su eficacia contra la infección por SARS-CoV-2. Por lo tanto, se pueden realizar más pruebas de confirmación lo antes posible en interés público.

Palabras Clave: in silico; proteína de punta; receptor TLR3; salud pública; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Shehzad A, Sumartono C, Nugraha J, Susilowati H, Wijaya AY, Ahmad HI, Kashif M, Tyasningsih W, Rantam FA (2022) Development of a multi-epitope spike glycoprotein vaccine to combat SARS-CoV-2 using the bioinformatics approach. J Pharm Pharmacogn Res 10(3): 445–458.

Abraham Peele K, Srihansa T, Krupanidhi S, Ayyagari VS, Venkateswarulu TC (2021) Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. J Biomol Struct Dyn 39(10): 3793–3801.

Ahmad B, Ashfaq UA, Rahman MU, Masoud MS, Yousaf MZ (2019) Conserved B and T cell epitopes prediction of Ebola virus glycoprotein for vaccine development: An immuno-informatics approach. Microb Pathog 132: 243–253.

Ahmad I, Ali SS, Zafar B, Hashmi HF, Shah I, Khan S, Suleman M, Khan M, Ullah S, Ali S, Khan J (2020) Development of multi-epitope subunit vaccine for protection against the norovirus’ infections based on computational vaccinology. J Biomol Struct Dyn 9: 1–12.

Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK (2017) Exploring dengue genome to construct a multi-epitope-based subunit vaccine by utilizing immunoinformatics approach to the battle against dengue infection. Sci Rep 7(1): 9232.

Amer H, Alqahtani AS, Alaklobi F, Altayeb J, Memish ZA (2018) Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed. Int J Infect Dis 71: 113–116.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1): W597–W603.

Arumugam S, Varamballi P (2021) In-silico design of envelope-based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci Rep 11(1): 17118.

Ashfaq UA, Ahmed B (2016) De novo structural modeling and conserved epitopes prediction of Zika virus envelop protein for vaccine development. Viral Immunol 29(7): 436–443.

Baruah V, Bose S (2020) Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. J Med Virol 92(5): 495–500.

Chang KY, Yang JR (2013) Analysis and prediction of highly effective antiviral peptides based on random forests. PloS One 8(8): e70166.

Chukwudozie OS, Chukwuanukwu RC, Iroanya OO, Eze DM, Duru VC, Dele-Alimi TO, Kehinde BD, Bankole TT, Obi PC, Okinedo EU (2020) Attenuated subcomponent vaccine design targeting the SARS-CoV-2 nucleocapsid phosphoprotein RNA binding domain: In silico analysis. J Immunol Res 2020: 2837670.

Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM (2021) Immuno-informatics design of a multimeric epitope peptide-based vaccine targeting SARS-CoV-2 spike glycoprotein. Plos One 16(3): e0248061.

Cockrell AS, Johnson JC, Moore IN, Liu DX, Bock KW, Douglas MG, Graham RL, Solomon J, Torzewski L, Bartos C, Hart R (2018) A spike-modified Middle East respiratory syndrome coronavirus (MERS-CoV) infectious clone elicits mild respiratory disease in infected rhesus macaques. Sci Rep 8(1): 10727.

Dar HA, Waheed Y, Najmi MH, Ismail S, Hetta HF, Ali A, Muhammad K (2020) Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: An in silico analysis. J Immunol Res 2020: 8893483.

Dimitrov I, Flower DR, Doytchinova I (2013) AllerTOP-a server for in silico prediction of allergens. BMC Bioinform 14(suppl. 6): S4.

Dong R, Chu Z, Yu F, Zha Y (2020) Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Front Immunol 11:1784.

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1): 4.

Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, pp. 571–607.

Geourjon C, Deleage G (1995) SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinform 11(6): 681–684.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open-Source Drug Discovery Consortium, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PloS One 8(9): e73957.

Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE (2018) Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC Struct Biol 18(1): 7.

Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A (2018) Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 18(8): e217-27.

Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6): 1895-1898.

Indriani R (2001) Antibody response and protection of inactivated-local isolate vaccine for infectious bronchitis in laying chicken. J IImTer Vet 6(2): 134–140.

Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1): W24–W29.

Jyotisha, Singh S, Qureshi IA (2020) Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 6: 1–17.

Kamens J (2015) The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res 43(D1): D1152–D1157.

Kathwate GH (2022) In silico design and characterization of multi-epitopes vaccine for SARS-CoV2 from its spike protein. Int J Pept Res Ther 28(1): 37.

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6): 845–858.

Khalil I, Omer I, Farh IZ, Mohamed HA, Elsharif HA, Mohamed AA, Awad-Elkareem MA, Salih MA (2018) Design of an epitope-based peptide vaccine against Cryptococcus neoformans. BioRxiv [Preprint]. doi: https://doi.org/10.1101/434779

Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40(W1): W294–W297.

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807): 215–220.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395: 565–574.

Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L (2021) SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol 12: 701501.

McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, Murphy KM, Colonna M (2009) Distinct and complementary functions of MDA5 and TLR3 in poly (I: C)-mediated activation of mouse NK cells. J Exp Med 206(13): 2967–2976.

McKee AS, Munks MW, Marrack P (2007) How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27(5): 687–690.

Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Ali N, Zaib S, Khan A, Al-Harrasi A, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health 14(7): 938–946.

O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant– ‘the long and winding road’. Drug Discov Today 14(11-12): 541–551.

Oany AR, Ahmad SA, Hossain MU, Jyoti TP (2015) Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine. Adv Appl Bioinform Chem 8: 1–10.

Oany AR, Emran AA, Jyoti TP (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in-silico approach. Drug Des Devel Ther 8: 1139–1149.

Olvera A, Noguera-Julian M, Kilpelainen A, Romero-Martín L, Prado JG, Brander C (2020) SARS-CoV-2 consensus-sequence and matching overlapping peptides design for COVID19 immune studies and vaccine development. Vaccines 8(3): 444.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1): 2144.

Phan AT, Goldrath AW, Glass CK (2017) Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46(5): 714–729.

Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D, van Buuren MM, Addona TA, Rooney MS, Srinivasan L, Gaynor RB (2020) Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Med 12(1): 70.

Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B (2020) Drug targets for corona virus: A systematic review. Indian J Pharmacol 52(1): 56–65.

Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G (2020) Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 4(4): 66–75.

Reche PA, Fernandez-Caldas E, Flower DR, Fridkis-Hareli M, Hoshino Y (2014) Peptide-based immunotherapeutics and vaccines. J Immunol Res2014: 256784.

Sadat SM, Aghadadeghi MR, Yousefi M, Khodaei A, Larijani MS, Bahramali G (2021) Bioinformatics analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol Biotechnol 63(5): 389–409.

Safavi A, Kefayat A., Mahdevar E, Abiri A, Ghahremani F (2020) Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 38(48): 7612–7628.

Sarma P, Shekhar N, Prajapat M, Avti P, Kaur H, Kumar S, Singh S, Kumar H, Prakash A, Dhibar DP, Medhi B (2021) In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J Biomol Struct Dyn 39(8): 2724–2732.

Shokeen K, Pandey S, Shah M, Kumar S (2020) Insight towards the effect of the multibasic cleavage site of SARS-CoV-2 spike protein on cellular proteases. BioRxiv [Preprint].doi:https://doi.org/10.1101/2020.04.25.061507.

Singh A, Thakur M, Sharma LK, Chandra K (2020) Designing a multi-epitope peptide-based vaccine against SARS-CoV-2. Sci Rep 10(1): 16219.

Srivastava S, Kamthania M, Kumar Pandey R, Kumar Saxena A, Saxena V, Kumar Singh S, Kumar Sharma R, Sharma N (2019) Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. J Biomol Struct Dyn 37(16): 4345–4360.

Tahir Ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL (2020a) Designing of a next generation multi-epitope-based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PloS One 15(12): e0244176.

Tahir Ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N (2020b) Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines 8(2): 288.

Tahir Ul Qamar MT, Bari A, Adeel MM, Maryam A, Ashfaq UA, Du X, Muneer I, Ahmad HI, Wang J (2018) Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach. J Transl Med 16(1): 298.

Tahir Ul Qamar MT, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S (2019) Epitope‐based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: An immune-informatics study. J Transl Med 17(1): 362.

Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Virol J94(7): e00127-20.

Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4): 635–664.

WHO (2021) World Health Organization. https://covid19.who.int/ [Consulted September 27, 2021].

Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395(10225): 689–697.

Yang Z, Bogdan P, Nazarian S (2021) An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci Rep 11(1): 3238.

Zeng L, Li D, Tong W, Shi T, Ning B (2021) Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochem Pharmacol189: 114424.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798): 270–273.

Zhu X, Liu Q, Du L, Lu L, Jiang S (2013) Receptor-binding domain as a target for developing SARS vaccines. J Thorac Dis 5(Suppl 2): S142–S148.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

B-cell epitopes for the development of SARS-CoV-2 vaccine

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 429-444, May-June 2022.

Original Article

Molecular characterization and prediction of B-cell epitopes for the development of SARS-CoV-2 vaccine through bioinformatics approach

[Caracterización molecular y predicción de epítopos de células B para el desarrollo de una vacuna contra el SARS-CoV-2 mediante un enfoque bioinformático]

Aamir Shehzad1, Martia Rani Tacharina1, Suryo Kuncorojakti2 , Hafiz Ishfaq Ahmad3, Rofiqul A’la1, Andi Yasmin Wijaya4, Wiwiek Tyasningsih5, Fedik Abdul Rantam1,4*

1Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.

2Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine Airlangga University, Surabaya, East Java, 60115, Indonesia.

3Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan.

4Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, 60115 Indonesia.

5Bacteriology and Mycology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60132, Indonesia.

*E-mail: fedik-a-r@fkh.unair.ac.id


Context: The SARS-CoV-2 virus is the cause of the COVID-19 pandemic, which is a severe public health crisis worldwide.Aims: To analyze the SARS-CoV-2 isolates of Surabaya and predict ORF1ab polyprotein epitopes through the bioinformatics approach for vaccine candidate development.

Methods: Three genomic sequences of Surabaya isolates were obtained from the GISAID, NCBI and PDB Gen-bank databases and MEGA-11 software were used to understand the transformations in the isolates. The IEDB and VaxiJen, AllerTop, and ToxinPred web servers were used to predict B-cell epitopes and analyze their antigenicity, non-allergenicity, non-toxicity, respectively. Moreover, these epitopes were linked by EAAAK for 3D modeling, refinement, and validation through Swiss-Model, Galaxy Refine, and RAMPAGE web tools.

Results: The Surabaya isolates, RSDS-RCVTD-UNAIR-49-A, 54-A, and 42-A, had 10, 20, and 16 mutations in nucleotides and depicted a phylogenetically close relationship to isolates of Egypt, Pakistan, and Bangladesh, respectively. A total of 71 sequential Orf1ab B-cell epitopes were predicted, and only three peptides were found to be antigenic,  non-allergenic, and non-toxic. These epitopes were linked with the EAAAK linker to develop a 3D refined and validated structure. This construct was docked with TLR-3 receptor by the Cluspro webserver and found a high affinity of ORF1ab+TLR3 due to 15 hydrogen bonds. The construct demonstrated good humoral and cellular immune responses in the C-ImmSim server, and cloning in the expression vector pET28a (+) yielded a colon of 846bp.

Conclusions: ORF1ab B-cell epitopes could be useful for developing effective vaccines to combat SARS-CoV-2 infection.

Keywords: bioinformatics; epitopes; ORF1ab polyproteins; public health; Indonesia; SARS-CoV-2.


Contexto: El virus SARS-CoV-2 es la causa de la pandemia de COVID-19, que es una grave crisis de salud pública a nivel mundial.Objetivos: Analizar los aislamientos de SARS-CoV-2 de Surabaya y predecir los epítopos de poliproteína ORF1ab mediante el enfoque bioinformático para el desarrollo de candidatos vacunales.

Métodos: Se obtuvieron tres secuencias genómicas de aislamientos de Surabaya de las bases de datos GISAID, NCBI and PDB  Gen-bank y el software MEGA-11 para comprender las transformaciones en los aislamientos. Se utilizaron los servidores web IEDB y VaxiJen, AllerTop y ToxinPred para predecir epítopos de células B y analizar su antigenicidad, no alergenicidad y no toxicidad, respectivamente. Además, EAAAK vinculó estos epítopos para el modelado, el refinamiento y la validación en 3D a través de las herramientas web Swiss-Model, Galaxy Refine y RAMPAGE.

Resultados: Los aislamientos de Surabaya, RSDS-RCVTD-UNAIR-49-A, 54-A y 42-A, tenían 10, 20 y 16 mutaciones en nucleótidos y mostraban una relación filogenéticamente cercana con los aislamientos de Egipto, Pakistán y Bangladesh, respectivamente. Se predijeron un total de 71 epítopos de células B Orf1ab secuenciales, y solo tres péptidos resultaron ser antigénicos, no alergénicos y no tóxicos. Estos epítopos se vincularon con el enlazador EAAAK para desarrollar una estructura 3D refinada y validada. Esta construcción fue acoplada con el receptor TLR-3 por el servidor web Cluspro y encontró una alta afinidad de ORF1ab+TLR3 debido a 15 enlaces de hidrógeno. La construcción demostró buenas respuestas inmunitarias celulares y humorales en el servidor C-ImmSim, y la clonación en el vector de expresión pET28a (+) produjo un colon de 846 pb.

Conclusiones: Los epítopos de células B ORF1ab podrían ser útiles para desarrollar vacunas efectivas para combatir la infección por SARS-CoV-2.

Palabras Clave: bioinformática; epítopos; poliproteínas ORF1ab; Indonesia; salud pública; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Shehzad A, Kuncorojakti S, Tacharina MR, Ahmad HI, A'la R, Wijaya AY, Tyasningsih W, Rantam FA (2022) Molecular characterization and prediction of B-cell epitopes for the development of SARS-CoV-2 vaccine through bioinformatics approach. J Pharm Pharmacogn Res 10(3): 429–444.

Abraham Peele K, Srihansa T, Krupanidhi S, Ayyagari V S, Venkateswarulu TC (2021) Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study.J Biomol Struct Dyn 39: 3793–3801.

Adianingsih OR, Kharisma VD (2019) Study of B cell epitope conserved region of the Zika virus envelope glycoprotein to develop multi-strain vaccine. J App Pharm Sci 9: 098–103.

Ansori AN, Kusala MK, Normalina I, Indrasari S, Alamudi MY, Nidom RV, Nidom CA (2020) Immunoinformatic investigation of three structural protein genes in Indonesian SARS-CoV-2 isolates. Sys Rev Pharm 11: 422–434.

Ansori AN, Nidom RV, Kusala MK, Indrasari S, Normalina I, Nidom AN, Nidom CA (2021) Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B. 1.1. 7 isolates originated from Indonesia to develop vaccine candidate against COVID-19. J Pharm Pharmacogn Res 9: 766–779.

Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S (2020) Emergence of novel coronavirus and COVID-19: Whether to stay or die out? Crit Rev Microbiol 46: 182–193.

Bond CW, Leibowitz JL, Robb JA (1979) Pathogenic murine coronaviruses II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology 94: 371–384.

Cai J, Sun W, Huang J, Gamber M, Wu J, He G (2020) Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis 26: 1343–1345.

Callaway E (2020a) Making sense of coronavirus mutations. Nature 585: 174–177.

Callaway E (2020b) The coronavirus is mutating–does it matter? Nature 585: 174–178.

Castiglione F, Mantile F, De Berardinis P, Prisco A (2012) How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput Math Methods Med 2012: 842329.

Cevik M, Kuppalli K, Kindrachuk J, Peiris M (2020) Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 371: m3862.

Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY (2020a) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect  9(1): 221-236.

Chan JFW, Zhang AJ, Yuan S, Poon VKM, Chan CCS, Lee ACY, Yuen KY (2020b) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71: 2428–2446.

Chukwudozie OS, Chukwuanukwu RC, Iroanya OO, Eze DM, Duru VC, Dele-Alimi TO, Okinedo EU (2020) Attenuated subcomponent vaccine design targeting the SARS-CoV-2 nucleocapsid phosphoprotein RNA binding domain: In silico analysis. J Immunol Res 2020: 2837670.

Cooper NR, Nemerow GR (1984) The role of antibody and complement in the control of viral infections. J Investig Dermatol 83: S121–S127.

Dandekar AA, Perlman S (2005) Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol 5: 917–927.

Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, Peters B (2019) IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids Res 47: W502–W506.

Dong L, Tian J, He S, Zhu C, Wang J, Liu C, Yang J (2020) Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 323: 1846-1848.

Duffy S (2018) Why are RNA virus mutation rates so damn high? PLoS Biol16: e3000003.

Emameh RZ, Nosrati H, Taheri RA (2020) Combination of biodata mining and computational modelling in identification and characterization of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Biol Proced Online 22: 8.

Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Stefani S (2020) Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med 46: 957–964.

Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, Lauring AS (2018) A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biology 16: e2006459.

Fritz M, Rosolen B, Krafft E, Becquart P, Elguero E, Vratskikh O, Denolly S, Boson B, Vanhomwegen J, Gouilh MA, Kodjo A, Chirouze C, Rosolen SG, Legros V, Leroy EM (2020) High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 11: 100192.

Gangaev A, Ketelaars SL, Isaeva OI, Patiwael S, Dopler A, Hoefakker K, De Biasi S, Gibellini L, Mussini C, Guaraldi G, Girardis M (2020a) Identification and characterization of an immunodominant SARS-CoV-2-specific CD8 T cell response. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-33197/v2

Gangaev A, Ketelaars SL, Patiwael S, Dopler A, Isaeva OI, Hoefakker K, Kvistborg P (2020b) Profound CD8 T-cell responses towards SARS-CoV-2 OFR1ab in COVID-19 patients. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-33197/v1

Gao T, Gao Y, Liu X, Nie Z, Sun H, Lin K, Wang S (2021) Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiol 21: 58.

Geourjon C, Deleage G (1995) SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11: 681–684.

Ghoshal B, Ghoshal B, Swift S, Tucker A (2021) Uncertainty estimation in SARS-CoV-2 B-cell epitope prediction for vaccine development. In: International Conference on Artificial Intelligence in Medicine. Springer, Cham, p. 361–366.

GISAD (2021) GISAID Database. Available from https://www.epicov.org/epi3/frontend#6d403 [Accessed July 27, 2021].

Graham RL, Sparks JS., Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirus replicase proteins in pathogenesis. Virus Res 133: 88–100.

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33: W526–W531.

Grubaugh ND, Hanage WP, Rasmussen AL (2020) Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear. Cell 182: 794–795.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PloS One 8: e73957.

Hachim A, Kavian N, Cohen CA, Chin AW, Chu DK, Mok CK, Tsang OT, Yeung YC, Perera RA, Poon LL, Peiris JM (2020) ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat Immunol 21: 1293–1301.

Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Xia Y (2020) Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 9: 1123–1130.

Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, Thornburg N J (2020) Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. BioRxiv [Preprint] DOI: 10.1101/2020.03.02.972935

Hernández‐Huerta MT, Pérez‐Campos Mayoral L, Romero Díaz C, Martínez Cruz M, Mayoral‐Andrade G, Sanchez Navarro LM, Matias‐Cervantes CA (2021) Analysis of SARS‐CoV‐2 mutations in Mexico, Belize, and isolated regions of Guatemala and its implication in the diagnosis. Med Virol 93: 2099–2114.

Horiike T (2016) An introduction to molecular phylogenetic analysis. Rev Agri Sci 4: 36-45.

Hu J, He CL, Gao Q, Zhang GJ, Cao XX, Long QX, Huang AL (2020) The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. BioRxiv [Preprint] DOI: 10.1101/2020.06.20.161323

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Cao B (2020a) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506.

Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020b) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41: 1141–1149.

Kathwate GH (2022) In silico design and characterization of multi-epitopes vaccine for SARS-CoV2 from its spike proteins. Int J Pept Res Ther 28: 37.

Khailany RA, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2. Gene Reports 19: 100682.

Khan MK, Zaman S, Chakraborty S, Chakravorty R, Alam MM, Bhuiyan TR, Seraj ZI (2014) In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mo.l Immunol 61: 16–22.

Khatoon N, Pandey RK, Prajapati VK (2017) Exploring leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7: 8285.

Kim JI (2020) New potential for healing the trauma of Maori from Brain Education. [Interview] Dr. Lily George, Director of Education, New Zealand Headquarters of ECO. IBREA Report 12: 3–7.

Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Montefiori DC (2020) Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell 182: 812–827.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874.

Lau SY, Wang P, Mok BWY, Zhang AJ, Chu H, Lee ACY, Chen H (2020) Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. EmergMicrobes Infect 9: 837–842.

Lewis DM, Leibrand S, Leibrand H (2020) A test-based strategy for safely shortening quarantine for COVID-19. MedRxiv [Preprint] DOI:10.1101/2020.11.24.20238287

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Wu J (2020a) Coronavirus infections and immune responses. JMed Virol 92: 424–432.

Li J, Wang H, Mao L, Yu H, Yu X, Sun Z, Wang X (2020b) Rapid genomic characterization of SARS-CoV-2 viruses from clinical specimens using nanopore sequencing. Sci Rep 10: 17492.

Liu K, Pan X, Li L, Yu F, Zheng A, Du P, Han P, Meng Y, Zhang Y, Wu L, Chen Q (2021) Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184(13): 3438–3451.

Mapleson D, Drou N, Swarbreck D (2015) RAMPART: A workflow management system for de novo genome assembly. Bioinformatics 31: 1824–1826.

Martin A, Nateqi J, Gruarin S, Munsch N, Abdarahmane I, Zobel M, Knapp B (2020) An artificial intelligence-based first-line defence against COVID-19: Digitally screening citizens for risks via a chatbot. Sci Rep 10: 19012.

Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146–157.

Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Khan I (2021) Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health 14: 938–946.

Nemati AS, Tafrihi M, Sheikhi F, Tabari AR, Haditabar A (2021) Designing a new multi epitope-based vaccine against COVID-19 disease: An immunoinformatic study based on reverse vaccinology approach. Res Sq [Preprint] DOI: 10.21203/rs.3.rs-206270/v1

Oany AR, Emran AA, Jyoti TP (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther 8: 1139.

Ozono S, Zhang Y, Ode H, Seng TT, Imai K, Miyoshi K, Tokunaga K (2021) Naturally mutated spike proteins of SARS-CoV-2 variants show differential levels of cell entry. Nat Commun 12:848.

Pandey RK, Bhatt TK, Prajapati VK (2018) Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep 8: 1125.

Park WB, Kwon NJ, Choi SJ, Kang CK, Choe PG, Kim JY, Oh MD (2020) Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci 35: 10–14.

Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One 5: e9862.

Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F (2020) Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 38: 7612–7628.

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Sen Gupta PS, Biswal S, Singha D, Rana MK (2021) Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2. J Biomol Struct Dyn 39: 5327–5333.

Siegrist CA (2008) Vaccine Immunology. Vaccines. SaundersElsevier, p. 17–36.

Singh A, Thakur M, Sharma LK, Chandra K (2020) Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Sci Rep 10: 16219.

Tahir ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Chen LL (2020) Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect DisPoverty 9: 132.

Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035.

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178: 104792.

Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T (2020) DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol 11: 1161.

Voloch CM, da Silva Francisco Jr R, de Almeida LG, Cardoso CC, Brustolini OJ, Gerber AL, de Vasconcelos ATR (2021) Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. Virol J 95: e00119-21.

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369: 330–333.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296–W303.

Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Bieniasz PD (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 9: e61312.

Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69: 635–664.

WHO (2020a) World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available at: https://www. who.int/emergencies/diseases/novel-coronavirus-2019/technicalguidance/naming-the-coronavirus-disease-(covid-2019)-and-thevirus-that-causes-it. [Accessed 2 March, 2020].

WHO (2020b) World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 32. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf [Accessed January 05, 2022].

WHO (2021) World Health Organization. Coronavirus disease. Available from https://covid19.who.int/ [Accessed August 27, 2021].

Yadav V, Rajput M, Diwakar RP, Kumar R (2020) An Overview on transmission of diseases in special reference to COVID-19 and potential Tar-gets to control this pandemic. J Adv Microbiol Res 4: 015.

Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q (2020) Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8: 153.

Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F, Liu J (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A 118: e2024202118.

Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259–260.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270–273.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382: 727–733.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Roselle flower for immunomodulatory adjuvant therapy in COVID-19

J. Pharm. Pharmacogn. Res., vol. 10, no. 3, pp. 418-428, May-June 2022

Original Article

Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach

[Antocianina, ácido tartárico, ácido ascórbico de flor de Jamaica (Hibiscus sabdariffa L.) para la terapia adyuvante inmunomoduladora en la manifestación oral de la enfermedad por coronavirus-19: Un enfoque inmunoinformático]

Nastiti Faradilla Ramadhani1, Alexander Patera Nugraha1,2*, Desintya Rahmadhani3, Martining Shoffa Puspitaningrum3, Yuniar Rizqianti3, Viol Dhea Kharisma4, Tengku Natasha Eleena binti Tengku Ahmad Noor5, Rini Devijanti Ridwan6, Diah Savitri Ernawati7, Albertus Putera Nugraha8

1Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

2Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

4Graduate Student of Biology Science, Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia

5Military Dental Officer of Royal Medical and Dental Corps, Malaysian Armed Forces, Indonesia.

6Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

7Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

8Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

*E-mail: alexander.patera.nugraha@fkg.unair.ac.id


Context: Oral manifestations that arose from COVID-19 infection often causes morbidity and systemic drug administration is less effective. Roselle flower (Hibiscus sabdariffa) is one of the plants that is often used in infusion as it gives health benefits. Hence, H. sabdariffa may benefit from adjuvant therapy to treat oral manifestation due to COVID-19.

Aims: To investigate the potential of H. sabdariffa anthocyanins, tartaric acid, and ascorbic acid chemical compounds as antiviral, anti-inflammatory, antioxidant, and increasing tissue regeneration in oral manifestation due to COVID-19 infection in silico.

Methods: Chemical compounds consisted of anthocyanins, (+)-tartaric acid, and ascorbic acid beside target proteins consisted of ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR and MDA-ovalbumin were obtained from the database, ligand samples were selected through absorption, distribution, metabolism, excretion and toxicology analysis, then molecular docking simulations, identification of protein-ligand interactions, and 3D visualization were performed.

Results: Anthocyanins, tartaric acid, and ascorbic acid are the active compounds in H. sabdariffa, which act as antioxidants. The activity of anthocyanin compounds is higher than other compounds through value binding affinity, which is more negative and binds to specific domains of target proteins by forming weak binding interactions that play a role in biological responses. Anthocyanins have the most negative binding energy compared to tartaric-acid and ascorbic acid.

Conclusions: Anthocyanins act as antioxidants; this mechanism increases heat shock protein-70 (HSP70), which may play an important role in increasing wound regeneration of oral manifestation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as documented in silico.

Keywords: COVID-19; dentistry; Hibiscus sabdariffa; infectious disease; medicine.


Contexto: Las manifestaciones orales derivadas de la infección por COVID-19 suelen causar morbilidad y la administración sistémica de fármacos es menos efectiva. La flor de Jamaica (Hibiscus sabdariffa) es una de las plantas que se suele utilizar en infusión ya que aporta beneficios para la salud. Por lo tanto, H. sabdariffa puede beneficiarse de la terapia adyuvante para tratar las manifestaciones orales debido a COVID-19.

Objetivos: Investigar el potencial de los compuestos químicos de H. sabdariffa, como antocianinas, ácido tartárico y ácido ascórbico como antivirales, antiinflamatorios, antioxidantes y el aumento de la regeneración de tejidos en la manifestación oral debido a la infección por COVID-19 a través de un enfoque inmunoinformático, un estudio in silico.

Métodos: Antocianinas, ácido tartárico y ácido ascórbico, además de proteínas diana como ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR y MDA-ovoalbúmina, se obtuvieron de la base de datos, las muestras de ligando se seleccionaron mediante análisis de absorción, distribución, metabolismo, excreción y toxicología, luego se realizaron simulaciones de acoplamiento molecular, identificación de interacciones proteína-ligando y visualización 3D.

Resultados: Las antocianinas, el ácido tartárico y el ácido ascórbico son los compuestos activos de H. sabdariffa que actúan como antioxidantes. La actividad de los compuestos de antocianina es mayor que la de otros compuestos a través de una afinidad de unión de valor que es más negativa y se une a dominios específicos de proteínas diana formando interacciones de unión débiles que desempeñan un papel en las respuestas biológicas. Las antocianinas tienen la energía de unión más negativa en comparación con el ácido tartárico y el ácido ascórbico.

Conclusiones: Las antocianinas actúan como antioxidantes; este mecanismo aumenta la proteína de choque térmico-70 (HSP70), que puede desempeñar un papel importante en el aumento de la regeneración de heridas de la manifestación oral en el síndrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2) como se documenta in silico.

Palabras Clave: COVID-19; enfermedad infecciosa; Hibiscus sabdariffa; medicamento; odontología.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha AP (2022) Anthocyanin, tartaric acid, ascorbic acid of roselle flower (Hibiscus sabdariffa L.) for immunomodulatory adjuvant therapy in oral manifestation coronavirus disease-19: An immunoinformatic approach. J Pharm Pharmacogn Res 10(3): 418–428.

Al-Snafi AE (2016) Pharmacological importance of Clitoria ternatea–A review. IOSR J Pharm 6(3): 68–83.

Amorim Dos Santos J, Normando AGC, Carvalho da Silva RL, De Paula RM, Cembranel AC, Santos-Silva AR, Guerra ENS (2020) Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int J Infect Dis 97: 326–328.

Arrigoni O, De Tullio MC (2002) Ascorbic acid: Much more than just an antioxidant. Biochim Biophys Acta 1569(1-3): 1–9.

Atiqi S, Hooijberg F, Loeff FC, Rispens T, Wolbink GJ (2020) Immunogenicity of TNF-inhibitors. Front Immunol 11: 312.

Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S (2020) Medicinal plants to strengthen immunity during a pandemic. Pharmaceuticals 13(10): 313.

Bell LCK, Meydan C, Kim J, Foox J, Butler D, Mason CE, Shapira SD, Noursadeghi M, Pollara G (2021) Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience 24(1): 101896.

Carvajal-Zarrabal O, Barradas-Dermitz DM, Orta-Flores Z, Hayward-Jones PM, Nolasco-Hipólito C, Aguilar-Uscanga MG, Miranda-Medina A, Bujang KB (2012) Hibiscus sabdariffa L, roselle calyx, from ethnobotany to pharmacology. J Exp Pharmacol 4: 25–39.

Coomes EA, Haghbayan H (2020) Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol 30(6): 1–9.

Danladi J, Sabir H (2021) Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol 358: 577632.

Dewi AMC, Dagradi EM, Wibowo P (2021) The effect of high dose vitamin C (ascorbic acid) on pro-inflammatory cytokines in COVID-19. Med Health Sci J 5(1): 46–50.

Díaz Rodríguez M, Jimenez Romera A, Villarroel M (2020) Oral manifestations associated with COVID‐19. Oral Dis DOI: 10.1111/odi.13555

Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21(9): 3242.

Fakeye T (2008) Toxicity and immunomodulatory activity of fractions of Hibiscus sabdariffa Linn (family Malvaceae) in animal models. Afr J Tradit Complement Altern Med 5(4): 394–398.

Galvan-Pena S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L, Magnuson A, Manickas-Hill Z, Piechocka-Trocha A, Worrall DP, Hall KE, Ghebremichael M, Walker BD, Li JZ, Yu XG, Mathis D, Benoist C (2020) Profound Treg perturbations correlate with COVID-19 severity. bioRxiv [Preprint]. 12(11): 416180.

Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J (2021) Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. J Adv Pharm Technol Res 12: 120–126.

Gollen B, Mehla J, Gupta P (2018) Clitoria ternatea Linn: A herb with potential pharmacological activities: Future prospects as therapeutic herbal medicine. J Pharma Reports 3(1): 1000141.

Haider T, Simader E, Glück O, Ankersmit HJ, Heinz T, Hajdu S, Negrin LL (2019) Systemic release of heat-shock protein 27 and 70 following severe trauma. Sci Rep 9(1): 9595.

Heck TG, Ludwig MS, Frizzo MN, Rasia-Filho AA, Homem de Bittencourt PI (2020) Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 134(15): 1991–2017.

Iranmanesh B, Khalili M, Amiri R, Zartab H, Aflatoonian M (2021) Oral manifestations of COVID‐19 disease: A review article. Dermatol Ther 34(1): e14578.

Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E (2020) Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicines 8(5): 100.

Jiang XW, Zhang Y, Zhang H, Lu K, Yang SK, Sun GL (2013) Double-blind, randomized, controlled clinical trial of the effects of diosmectite and basic fibroblast growth factor paste on the treatment of minor recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 116(5): 570–575.

Khandia R, Munjal AK, Iqbal HMN, Dhama K (2017) Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat Inflamm Allergy Drug Discov 10(2): 94–104.

Kharisma VD, Ansori ANM, Widyananda MH, Utami SL, Nugraha AP (2020) Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochem Cell Arch 20(Suppl 1): 2795–2802.

Kharisma VD, Widyananda MH, Ansori ANM, Nege A, Naw SW, Nugraha AP (2021) Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res 9(4): 435–445.

Li S, Zhang Y, Guan Z, Li H, Ye M, Chen X, Shen J, Zhou Y, Shi ZL, Zhou P, Peng K (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther 5(1): 235.

López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA (2020) Immune response and COVID-19: A mirror image of sepsis. Int J Biol Sci 16(14): 2479–2489.

Luo XH, Zhu Y, Mao J, Du RC (2021) T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93(3): e12989.

Luqman A, Kharisma VD, Ruiz RA, Götz F (2020) In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem 54: 888–898.

Marpaung A (2020) Tinjauan manfaat bunga telang (Clitoria ternatea L.) bagi kesehatan manusia. J Funct Food Nutraceutical 1(2): 47–69.

Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M (2021) Changes in oxidative markers in COVID-19 patients. Arch Med Res 52(8): 843–849.

Mishra N, Tandon VL, Gupta R (2012) Immunomodulation by Hibiscus rosa-sinensis: Effect on the humoral and cellular immune response of Mus musculus. Pak J Biol Sci 15(6): 277–283.

Plum SM, Vu HA, Mercer B, Fogler WE, Fortier AH (2004) Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol 26(1): 29–41.

Putra WE, Kharisma VD, Susanto H (2020) The exploration of medicinal plants’ phytochemical compounds as potential inhibitor against human α-3 nicotinic acetylcholine receptors: The insight from computational study. AIP Conf Proc 2231(1): 040078.

Reang J, Sharma PC, Thakur VK, Majeed J (2021) Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 11(8): 1130.

Sari F, Nurkhasanah, Bachri MS (2016) Acute toxicity test of rosella (Hibiscus sabdariffa L.) calyx ethanolic extract on Sprague Dawley rats. Trad Med J 21: 12–18.

Shruthi VH, Ramachandra CT, Nidoni U, Hiregoudar S, Naik N, Kurubar AR (2016) Roselle (Hibiscus sabdariffa L.) as a source of natural colour: A review. Plant Arch 16(2): 515–522.

Smadja DM, Philippe A, Bory O, Gendron N, Beauvais A, Gruest M, Peron N, Khider L, Guerin CL, Goudot G, Levavasseur F, Duchemin J, Pene F, Cheurfa C, Szwebel TA, Sourdeau E, Planquette B, Hauw-Berlemont C, Hermann B, Gaussem P, Samama CM, Mirault T, Terrier B, Sanchez O, Rance B, Fontenay M, Diehl JL, Chocron R (2021) Placental growth factor level in plasma predicts COVID-19 severity and in-hospital mortality. J Thromb Haemost 19(7): 1823–1830.

Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5): a016303.

Susanto H, Kharisma VD, Listyorini D, Taufiq A (2018) Effectivity of black tea polyphenol in adipogenesis related IGF-1 and its receptor pathway through in silico based study. J Phys Conf Ser 1093 (1): 012037.

Syahrana NA, Akrom A, Darmawan E (2017) Efek serbuk bunga rosella merah (Hibiscus sabdariffa L.) terhadap ekspresi IL-10 pada sukarelawan sehat. Indones J Pharm Pharm Sci 4(1): 1–5.

Umeoguaju FU, Ephraim-Emmanuel BC, Uba JO, Bekibele GE, Chigozie N, Orisakwe OE (2021) Immunomodulatory and mechanistic considerations of Hibiscus sabdariffa (HS) in dysfunctional immune responses: A systematic review. Front Immunol 12: 550670.

Velavan TP, Meyer CG (2020) The COVID‐19 epidemic. Trop Med Int Health 25(3): 278.

Vieira AR (2021) Oral manifestations in coronavirus disease 2019 (COVID-19). Oral Dis 27(3): 770.

Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Yulanda A (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496

WHO (2021) World Health Organization. https://covid19.who.int/table [Accessed online on: 19 March 2021]

Yalçin B, Arda N, Tezel GG, Erman M, Alli N (2006) Expressions of vascular endothelial growth factor and CD34 in oral aphthous lesions of Behçet’s disease. Anal Quant Cytol Histol 28(6): 303–306.

Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2): 27–37.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Moroccan medicinal plants against COVID-19

J Pharm Pharmacogn Res 10(2): 227-238, 2022.

Original Article

Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco

[Estudio de acoplamiento molecular de los principales fitoquímicos de algunas plantas medicinales utilizadas contra el COVID-19 por la población rural de la región de Al-Haouz, Marruecos]

Ridwane Ghanimi1*, Ahmed Ouhammou2, Yassine El Atki3, Mohamed Cherkaoui1

1Laboratory of Pharmacology, Neurobiology, Anthropobiology, Environment and Behaviour, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, BP 2390, 40000, Morocco.

2Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Agrosciences, Phytobiodiversity and Environment Team, Regional Herbarium ‘MARK’, Department of Biology, Faculty of Sciences Semlalia , Cadi Ayyad University, PO. Box 2390, Marrakech, 400001, Morocco.

3Laboratory of Physiology Pharmacology and Environmental Health, Department of Biology, Faculty of Sciences Dhar Mehraz,Sidi Mohamed Ben Abdellah University, Fez, Morocco.

*E-mail: ghanimiridwane@gmail.com, ridwane.ghanimi@ced.uca.ma


Context: The infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global health emergency. The management of this crisis requires the discovery of new drugs able to cure or reduce the severity of SARS-CoV-2.

Aims: To explore the medicinal plants consumed by the rural population of Al-Haouz region against the emergence of the COVID-19, and to assess in silico the main phytochemicals present in the essential oils and the extracts of these medicinal plants, as potential inhibitors of the COVID-19 main protease (Mpro).

Methods: The survey was conducted through a semi-structured questionnaire among 85 respondents aged 30 years and above, in the Al-Haouz region, Morocco. AutoDock Vina, was used to assess the binding affinity of the phytochemicals to the Mpro.

Results: Eleven wild medicinal species were cited; 10 belonging to the Lamiaceae family and one to the Compositae family. Thymus saturejoides Coss., Artemisia herba-alba Asso.and Mentha suaveolens Ehrh. were respectively the three most cited species during the survey. The rosmarinic acid (-7.7 kcal/mol), hesperetin (-7.2 kcal/mol), gallocatechin (-7.2 kcal/mol) and cyasterone (-7.2 kcal/mol) have shown the higher inhibitory potential against covid-19 Mpro respectively.

Conclusions: In addition to their different recognized biological activities, the medicinal plants used in the Al-Haouz region have shown good inhibitory potential against SARAS-CoV-2 Mpro. Furthermore, the phytochemicals that exhibited the highest inhibitory potentials in this virtual study require further investigation in vitro and in vivo.

Keywords: COVID-19; ethnomedicine; medicinal plants; molecular docking; Morocco; SARS-CoV-2.


Contexto: La infección por el coronavirus 2 del síndrome respiratorio agudo severo (SARS-CoV-2) es una emergencia sanitaria mundial. El manejo de esta crisis requiere el descubrimiento de nuevos medicamentos capaces de curar o reducir la gravedad del SARS-CoV-2.

Objetivos: Explorar las plantas medicinales consumidas por la población rural de la región de Al-Haouz frente a la aparición del COVID-19, y evaluar in silico los principales fitoquímicos presentes en los aceites esenciales y los extractos de estas plantas medicinales, como potenciales inhibidores. de la proteasa principal COVID-19 (Mpro).

Métodos: La encuesta se realizó a través de un cuestionario semiestructurado entre 85 encuestados de 30 años o más, en la región de Al-haouz, Marruecos. Se utilizó AutoDock Vina para evaluar la afinidad de unión de los fitoquímicos al Mpro.

Resultados: Se citaron once especies medicinales silvestres; 10 pertenecientes a la familia Lamiaceae y una a la familia Compositae. Thymus saturejoides Coss., Artemisia herba-alba Asso. y Mentha suaveolens Ehrh. fueron, respectivamente, las tres especies más citadas durante la encuesta. El ácido rosmarínico (-7,7 kcal/mol), la hesperetina (-7,2 kcal/mol), la galocatequina (-7,2 kcal/mol) y la ciasterona (-7,2 kcal/mol) han mostrado el mayor potencial inhibitorio frente al covid-19 Mpro, respectivamente.

Conclusiones: Además de sus diferentes actividades biológicas reconocidas, las plantas medicinales utilizadas en la región de Al-Haouz han mostrado un buen potencial inhibitorio contra SARAS-CoV-2 Mpro. Además, los fitoquímicos que exhibieron los potenciales inhibidores más altos en este estudio virtual requieren más investigación in vitro e in vivo.

Palabras Clave: acoplamiento molecular; COVID-19; etnomedicina; Marruecos; plantas medicinales; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ghanimi R, Ouhammou A, El Atki Y, Cherkaoui M (2022) Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. J Pharm Pharmacogn Res 10(2): 227–238.

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Volume 9, Suppl. 1 (MICPS 2021)

J Pharm Pharmacogn Res 9(Suppl. 1), (October) 2021

1st Makassar International Conference on Pharmaceutical Sciences

(MICPS 2021)

Empowering Natural Product in Drugs Discovery and Development

Faculty of Pharmacy Universitas Muslim Indonesia

Makassar, Indonesia

September 25-26, 2021

Conference Proceedings  [1.3 Mb]
Editing, design and realization: Gabino Garrido, Marisela Valdés, Xavier Garrido, Muammar Fawwaz, Aktsar Roskiana Ahmad
Editorial Scientific Council: Muammar Fawwaz, Aktsar Roskiana Ahmad, A. Emelda, Nurmaya Effendi

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

B-cell epitope of SARS-CoV-2 and COVID-19 vaccine candidate

J Pharm Pharmacogn Res 9(6): 766-779, 2021.

Original article

Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B.1.1.7 isolates originated from Indonesia to develop vaccine candidate against COVID-19

[Investigación viroinformática de la región conservada del epítopo de células B en el linaje SARS-CoV-2 B.1.1.7 aislamientos originados en Indonesia para desarrollar una vacuna candidata contra COVID-19]

Arif N. M. Ansori1,2#, Reviany V. Nidom1,3*#, Muhammad K. J. Kusala1,2, Setyarina Indrasari1,3, Irine Normalina1,4, Astria N. Nidom1,3, Balqis Afifah1,3, Kartika B. Sari1,5, Nor L. Ramadhaniyah1,5, Mohammad Y. Alamudi1,3, Umi Cahyaningsih6, Kuncoro P. Santoso1,2, Heri Kuswanto5, Chairul A. Nidom1,2,3*

1Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia.

2Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.

3Riset AIRC Indonesia, Surabaya, Indonesia.

4Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

5Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

6Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.

#Both authors contributed equally.

*E-mail: reviany@pnfinstitute.org, nidomca@pnfinstitute.org, nidomca@fkh.unair.ac.id


Context: SARS-CoV-2, a member of family Coronaviridae and the causative agent of COVID-19, is a virus which is transmitted to human and other mammals.

Aims: To analyze the B-cell epitope conserved region and viroinformatics-based study of the SARS-CoV-2 lineage from Indonesian B.1.1.7 isolates to invent a vaccine nominee for overcoming COVID-19.

Methods: The sequences of seven Indonesian B.1.1.7 isolates, Wuhan-Hu-1 isolate, and WIV04 isolate were extracted from the GISAID EpiCoV and GenBank, NCBI. MEGA X was employed to understand the transformations of amino acid in the S protein and to develop a molecular phylogenetic tree. The IEDB was implemented to reveal the linear B-cell epitopes. In addition, PEP-FOLD3 web server was utilized to perform peptide modeling, while docking was performed using PatchDock, FireDock, and the PyMOL software. Moreover, in silico cloning was developed by using SnapGene v.3.2.1 software.

Results: In this study, the changes of amino acid in all seven Indonesian B.1.1.7 isolates were uncovered. Furthermore, various peptides based on the B-cell epitope prediction, allergenicity prediction, toxicity prediction from S protein to generate a vaccine contrary to SARS-CoV-2 were identified. Furthermore, the development of in silico cloning using pET plasmid was successfully achieved.

Conclusions: This study exhibits the transformations of amino acid in Indonesian B.1.1.7 isolates, and proposes four peptides (“LTPGDSSSGWTAG”, “VRQIAPGQTGKIAD”, “ILPDPSKPSKRS”, and “KNHTSPDVDLG”) from S protein as the candidate for a peptide-based vaccine. However, further advance trials such as in vitro and in vivo testing are involved for validation.

Keywords: COVID-19; SARS-CoV-2; vaccine design; viroinformatics.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: SARS-CoV-2, un miembro de la familia Coronaviridae y el agente causante de COVID-19, es un virus que se transmite a humanos y otros mamíferos.

Objetivos: Analizar la región conservada del epítopo de células B y el estudio basado en viroinformática del linaje SARS-CoV-2 de los aislados B.1.1.7 de Indonesia para inventar una vacuna candidata para superar COVID-19.

Métodos: Las secuencias de siete aislamientos B.1.1.7 indonesios, el aislado Wuhan-Hu-1 y el aislado WIV04 se extrajeron de GISAID EpiCoV y GenBank, NCBI. Se empleó MEGA X para comprender las transformaciones de aminoácidos en la proteína S y para desarrollar un árbol filogenético molecular. El IEDB se implementó para revelar los epítopos de células B lineales. Además, se utilizó el servidor web PEP-FOLD3 para realizar el modelado de péptidos, mientras que el acoplamiento se realizó mediante PatchDock, FireDock y el software PyMOL. Además, la clonación in silico se desarrolló utilizando el software SnapGene v.3.2.1.

Resultados: En este estudio, se descubrieron los cambios de aminoácidos en los siete aislamientos de B.1.1.7 de Indonesia. Además, se identificaron varios péptidos basados en la predicción del epítopo de células B, la predicción de la alergenicidad, la predicción de la toxicidad de la proteína S para generar una vacuna contraria al SARS-CoV-2. Además, se logró con éxito el desarrollo de la clonación in silico utilizando el plásmido pET.

Conclusiones: Este estudio exhibe las transformaciones de aminoácidos en aislados B.1.1.7 de Indonesiay propone cuatro péptidos (“LTPGDSSSGWTAG”, “VRQIAPGQTGKIAD”, “ILPDPSKPSKRS” y “KNHTSPDVDLG”) de la proteína S como candidato para una vacuna basada en péptidos. Sin embargo, para la validación se requieren más ensayos in vitro e in vivo.

Palabras Clave: COVID-19; SARS-CoV-2; vaccine design; viroinformatics.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Ansori ANM, Nidom RV, Kusala MKJ, Indrasari S, Normalina I, Nidom AN, Afifah B, Sari KB, Ramadhaniyah NL, Alamudi MY, Cahyaningsih U, Santoso KP, Kuswanto H, Nidom CA (2021) Viroinformatics investigation of B-cell epitope conserved region in SARS-CoV-2 lineage B.1.1.7 isolates originated from Indonesia to develop vaccine candidate against COVID-19. J Pharm Pharmacogn Res 9(6): 766–779.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Methylene blue therapy against COVID-19

J Pharm Pharmacogn Res 9(3): 379-396, 2021.


The rationale for methylene blue utility against SARS-CoV-2 infection complications

[Fundamentación de la utilidad del azul de metileno contra las complicaciones de la infección por SARS-CoV-2]

Gilberto L. Pardo Andreu

Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana (UH), Av. 23 # 2317 b/ 214 and 222, La Coronela, La Lisa, PO 13600 Havana, Cuba.

*E-mail: gpardo@ifal.uh.cu


Context: Almost one year after the onset of COVID-19 pandemic in Wuhan, China and still no specific therapy has emerged, counting millions of dead worldwide. The association of an uncontrolled SARS-CoV-2 replication and host-dependent mechanisms in COVID-19 pathogenesis suggest that any therapeutic strategy must combine antiviral drugs and adjuvant therapy to modulate the host’s responses. Owing to the multiplicity of mechanisms involved in COVID-19 pathogenic expressions, such as severe hypoxia, excessive inflammatory reaction and impaired immune response, an emerging therapeutic paradigm is the searching for agents acting as multifunctional drugs. Methylene blue (MB), the antique medication, seems to meet the above criterion.

Aims: To summarize the probable beneficial effects of MB against COVID-19 supported by a discussion of the drug mechanisms of action counteracting the pathogenic mechanisms of the disease.

Methods: PubMed, Google Scholar, and Scopus databases were used to collect the biomedical research on MB, and the discussed dataset finally included 150 published articles. Those COVID-19 pathogenic pathways possibly targeted by MB were critically appraised.

Results: It was found that MB may act as multimodal agent by targeting simultaneously several pathogenic mechanisms of COVID-19 as hypoxic damage, hyper-inflammatory reaction and death signaling activation. It also may act as a virucidal agent by preventing virus-induced metabolic re-orientation. Its high safety profile, low cost, along with the mechanisms discussed herein might be essential criteria to test MB as an adjuvant therapy against COVID-19.

Conclusions: Overall, this critical review provides theoretical grounds for MB clinical evaluation in the therapeutic management of SARS-CoV-2 infection.

Keywords: COVID-19; methylene blue; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: Casi un año después del inicio de la pandemia de COVID-19 en Wuhan, China, y aún no ha surgido una terapia específica, contando millones de muertos en todo el mundo. La asociación de una replicación no controlada del SARS-CoV-2 y los mecanismos dependientes del hospedero en la patogénesis del COVID-19 sugieren que cualquier estrategia terapéutica debe combinar fármacos antivirales y terapia adyuvante para modular las respuestas del hospedero. Debido a la multiplicidad de mecanismos involucrados en las expresiones patogénicas de la COVID-19, como la hipoxia severa, la reacción inflamatoria excesiva y la respuesta inmune deteriorada, un paradigma terapéutico emergente es la búsqueda de agentes que actúen como fármacos multifuncionales. El azul de metileno (AM), un antiguo medicamento, parece cumplir con el criterio anterior.

Objetivos: Resumir los probables efectos beneficiosos del AM contra la COVID-19 apoyados por una discusión de los mecanismos de acción del fármaco que pudieran contrarrestar los mecanismos patogénicos de la enfermedad.

Métodos: Se utilizaron las bases de datos PubMed, Google Scholar y Scopus para recopilar las investigaciones biomédicas sobre el AM, y el conjunto de datos que se discutió finalmente incluyó 150 artículos publicados. Se evaluaron críticamente aquellos mecanismos patogénicos de la COVID-19 posibles blancos farmacológicos del AM.

Resultados: Se encontró que el AM puede actuar como un agente multimodal al actuar simultáneamente sobre varios mecanismos patogénicos de la COVID-19 como el daño hipóxico, la reacción hiperinflamatoria y la activación de señalizaciones de muerte. También puede actuar como agente virucida al prevenir la reorientación metabólica del hospedero inducida por el virus. Su elevado perfil de seguridad, bajo costo, junto con los mecanismos discutidos en este documento, podrían ser criterios esenciales para probar el AM como terapia adyuvante contra la COVID-19.

Conclusiones En general, esta revisión crítica proporciona las bases teóricas para la evaluación clínica del AM en el manejo terapéutico de la infección por SARS-CoV-2.

Palabras Clave: azul de metileno; COVID-19; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Pardo Andreu GL (2021) The rationale for methylene blue utility against SARS-CoV-2 infection complications. J Pharm Pharmacogn Res 9(3): 379–396.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)

Ozone in COVID-19

J Pharm Pharmacogn Res 9(2): 126-142, 2021.

Original Article

Complementary application of the ozonized saline solution in mild and severe patients with pneumonia COVID-19: A non-randomized pilot study

[Aplicación de la solución salina ozonizada como terapia complementaria en pacientes COVID-19 con neumonía de estadía mediana a severa: Estudio piloto no aleatorizado]

Adriana Schwartz1,Gregorio Martínez-Sánchez2*, Alejandra M. de Lucía3, Sergio M. Viana4, Alina M. Constanta5

1Fiorella Clinic, Pain Management Unit, Madrid (28035), Spain.

2Scientific advisor, Freelance, Ancona (60126), Italy.

3Integrative Medicine Clinic, Madrid (28002), Spain.

4Cardio Care of Hospital High Care Marbella and Hospital CHIP of Malaga (29010), Spain.

5Hospital Virgen De La Paloma, Madrid (28003) Spain.

*E-mail: gregorcuba@yahoo.it


Context: Currently, there is no effective antiviral therapy recommended for novel coronavirus pneumonia 2019 (COVID-19).

Aims: To assess the safety of ozonized saline solution (O3SS) used as a complementary therapy in adult COVID-19 patients.

Methods: Twenty-five adult patients hospitalized with mild to severe symptoms of COVID-19, who met the inclusion criteria and were treated from April 18 to April 26, 2020, at Virgen De La Paloma Hospital, Madrid, Spain were included in this study. Patients were assigned to receive standard care consisting ceftriaxone (250 mg – 2 g twice daily for 7 days) plus azithromycin (500 mg once daily for 5 days), of 200 – 400 mg hydroxychloroquine twice daily for 5-7 days plus tocilizumab 400 mg twice daily for 5 days, low molecular weight heparin and 40 to 60 mg metil-prednisone plus O3SS, 200 mL, 3-5 µg/mL per day for 10 days. No control group was included, the data was compared to clinical trials in this subject. Secondary endpoints assessed included the clinical status of participants, laboratory examinations, and duration of viral shedding.

Results: Patients with COVID-19 with mild to severe symptoms who received intravenous O3SS as an adjunct treatment experienced no side effects. The main results of O3SS treatment were a tendency to improve clinical symptoms without side effects. None of the patients treated died.

Conclusions: Early evidence of efficacy shown improvements in symptoms such as dyspnea, weakness, and reduction in body temperature were observed and corresponded to improvements in laboratory results including D-dimer, fibrinogen, lactate dehydrogenase, and C-reactive protein. These preliminary data will serve as the basis for a future study of the effectiveness of this therapy.

Keywords: COVID-19; ozone therapy; ozonized saline solution; pneumonia; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png

Contexto: Actualmente, no existe una terapia antiviral eficaz recomendada para la neumonía por el nuevo coronavirus 2019 (COVID-19).

Objetivos: Evaluar la seguridad de la solución salina ozonizada (O3SS) como terapia complementaria en pacientes adultos con COVID-19.

Métodos: Se incluyeron veinticinco pacientes adultos con síntomas leves a severos de COVID-19, que cumplieron con los criterios de inclusión. Estos fueron tratados del 18 al 26 de abril de 2020, en el Hospital Virgen de La Paloma, Madrid, España. Los pacientes fueron asignados para recibir atención estándar [ceftriaxona (250 mg – 2 g cada 12 h por 7 días); azitromicina (500 mg cada 24 h por 5 días); 200-400 mg de hidroxicloroquina cada 12 h por 5-7 días; tocilizumab 400 mg cada 12 h por 5 días; heparina y 40 a 60 mg de metil-prednisona] más O3SS, 200 mL, 3-5 µg/mL por día durante 10 días. No se incluyó ningún grupo de control, los datos se compararon con ensayos clínicos similares. Los criterios de valoración secundarios incluyeron el estado clínico de los participantes, los exámenes de laboratorio y la duración de la diseminación viral.

Resultados: Los pacientes con COVID-19 tratados que recibieron O3SS intravenoso como tratamiento complementario no experimentaron efectos secundarios. El tratamiento con O3SS tendió a mejorar los síntomas clínicos. Ninguno de los pacientes tratados falleció.

Conclusiones: Se observaron evidencias tempranas de mejoras en síntomas como disnea, debilidad y reducción de la temperatura corporal, que correspondieron con una mejora de variables como: el dímero D, fibrinógeno, lactato deshidrogenasa y proteína C reactiva. Estos datos preliminares servirán de base para un futuro estudio de la eficacia de esta terapia.

Palabras Clave: Clave: COVID-19; ozonoterapia; solución salina ozonizada, neumonía; SARS-CoV-2.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Schwartz A, Martínez-Sánchez G, de Lucía AM, Viana SM, Constanta AM (2021) Complementary application of the ozonized saline solution in mild and severe patients with pneumonia COVID-19: A non-randomized pilot study. J Pharm Pharmacogn Res 9(2): 126–142.

© 2021 Journal of Pharmacy & Pharmacognosy Research (JPPRes)