Tag Archives: virtual screening

Virtual screening of lead flavonoids against DENV2

J. Pharm. Pharmacogn. Res., vol. 10, no. 4, pp. 660-675, July-August 2022.

Original Article

Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein

[Flavonoides como posibles inhibidores de la proteína de la cubierta del virus del dengue 2 (DENV2)]

Rachel Raditya Renantha1, Alvin Richardo Liga1, Christy Bianca Tanugroho1, Lovine Xaviera Denovian1, Siti Lateefa Az Zahra Budiyanto2, Arli Aditya Parikesit2*

1Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav.88 Jakarta 13210 Indonesia.

2Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav.88 Jakarta 13210 Indonesia.

*E-mail: arli.parikesit@i3l.ac.id


Context: Dengue viruses (DENVs) are the cause of dengue disease, which is one of the most frequent diseases caused by mosquito-borne viral infections. Currently, no specific treatment is available for dengue.

Aims: To identify the most promising inhibitors of dengue virus 2 (DENV2) envelope protein of DENV2 envelope protein from flavonoids compounds through computational methods.

Methods: Structures of 54 flavonoids were collected, then the compounds were screened based on Lipinski’s rules, and there were only 34 compounds that passed the screening. Then QSAR analysis was performed, followed by molecular docking analysis, ADMET evaluation, and molecular dynamics simulations to assess the stability of the protein.

Results: Based on the QSAR analysis, only 32 compounds were subjected to molecular docking analysis. Silymarin had the highest docking score, while juglanin had the lowest ACE score compared to positive controls. The ADMET evaluation showed silymarin and juglanin had good absorption and could not penetrate the blood-brain barrier. In contrast to silymarin which had negative results for the Ames test, carcinogenicity, skin sensitization, and eye irritation, juglanin was positive for Ames test and skin sensitization. Even though the molecular dynamic simulation of both ligands with DENV2 envelope protein showed unstable confirmation, it did not necessarily mean that the ligands cannot be used as inhibitors since the molecular docking results provide evidence of the ligands binding to the DENV2 envelope protein.

Conclusions: Based on the favorable results of QSAR analysis, molecular docking, and ADMET evaluation, juglanin and silymarin were chosen as the candidate with the most potential for DENV2 envelope protein inhibitors. However, further analyses such as in vitro and in vivo analyses are necessary to validate the result of this study.

Keywords: DENV-2; envelope protein; flavonoids; molecular docking; virtual screening.


Contexto: Los virus del dengue (DENV) son los causantes de la enfermedad del dengue, que es una de las enfermedades más frecuentes causada por infecciones virales transmitidas por mosquitos. Actualmente, no se dispone de un tratamiento específico para el dengue.

Objetivos: Identificar los inhibidores más prometedores de la proteína de la envoltura del virus del dengue 2 (DENV2) de la proteína de la envoltura del DENV2 a partir de compuestos de flavonoides a través de métodos computacionales.

Métodos: Las estructuras de 54 flavonoides fueron recolectadas. Los compuestos se seleccionaron según las reglas de Lipinski y solo 34 compuestos pasaron la selección. Luego se realizó el análisis QSAR, seguido de análisis de acoplamiento molecular, evaluación ADMET y simulaciones de dinámica molecular para evaluar la estabilidad de la proteína.

Resultados: Según el análisis QSAR, solo 32 compuestos se sometieron a análisis de acoplamiento molecular. La silimarina obtuvo la puntuación de acoplamiento más alta, mientras que juglanina obtuvo la puntuación ACE más baja en comparación con los controles positivos. La evaluación ADMET mostró que la silimarina y la juglanina tenían una buena absorción y no podían penetrar la barrera hematoencefálica. En contraste con la silimarina que tuvo resultados negativos para la prueba de Ames, carcinogenicidad, sensibilización de la piel e irritación de los ojos, la juglanina fue positiva para la prueba de Ames y la sensibilización de la piel. Aunque la simulación de la dinámica molecular de ambos ligandos con la proteína de la cubierta de DENV2 mostró una confirmación inestable, no significa necesariamente que los ligandos no puedan usarse como inhibidores, ya que los resultados del acoplamiento molecular proporcionan evidencia de que los ligandos se unen a la proteína de la cubierta de DENV2.

Conclusiones: En base a los resultados favorables del análisis QSAR, el acoplamiento molecular y la evaluación ADMET, la juglanina y la silimarina fueron elegidas como las candidatas con mayor potencial para los inhibidores de la proteína de la envoltura de DENV2. Sin embargo, se necesitan más análisis, como análisis in vitro e in vivo, para validar el resultado de este estudio.

Palabras Clave: acoplamiento molecular; DENV-2; flavonoides; proteína de envoltura; proyección virtual.

This image has an empty alt attribute; its file name is jppres_pdf_free.png
Citation Format: Renantha RR, Liga AR, Tanugroho CB, Denovian LX, Budiyanto SLAZ, Parikesit AA (2022) Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J Pharm Pharmacogn Res 10(4): 660–675.

Badshah S, Faisal S, Muhammad A, Poulson B, Emwas A, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140(9): 111596.

Bekhit A, Bekhit A (2014) Natural antiviral compounds. Stud Nat Prod Chem 42(1): 195–228.

Boonyasuppayakorn S, Reichert E, Manzano M, Nagarajan K, Padmanabhan R (2014) Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antivir Res 106(6): 125–134.

Dong ZW, Yuan YF (2018) Juglanin suppresses fibrosis and inflammation response caused by LPS in acute lung injury. Int J Mol Med 41(6): 3353–3365.

Duhovny D, Nussinov R, Wolfson H (2002) Efficient unbound docking of rigid molecules. Lect Notes Comput Sci 2452(1):185–200.

Filimonov D, Lagunin A, Gloriozova T, Rudik A, Druzhilovskii D, Pogodin P, Poroikov V (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocy Comp 50(3): 444–457.

Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y (2019) ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10(1): 148–157.

Hanwell M, Curtis D, Lonie D, Vandermeersch T, Zurek E, Hutchison G (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1): 17.

Hengstler J, Oesch F (2001) Ames Test. Ency Gen 1(1): 51–54.

Ho L, Liu P, Wang C, Wu J (2007) The development of a drug discovery virtual screening application on Taiwan. Unigrid Adv Grid Perv Comp 2(3): 38–47.

Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6): 1129–1143.

Hou G, Zeng K, Lan H, Wang Q (2018) Juglanin ameliorates UVB‑induced skin carcinogenesis via anti‑inflammatory and proapoptotic effects in vivo and in vitro. Int J Mol Med 42(3): 41–52.

Ismail N, Jusoh S (2016) Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein. Interdiscip Sci 9(4): 499–511.

Karim A, Riahi V, Mishra A, Newton M, Dehzangi A, Balle T, Sattar A (2021) Quantitative toxicity prediction via meta ensembling of multitask deep learning models. ACS Omega 6(18): 12306–12317.

Krug RM, Aramini JM (2009) Emerging antiviral targets for influenza A virus. Trends Pharm Sci 30(6): 269–277.

Kurcinski M, Oleniecki T, Ciemny M, Kuriata A, Kolinski A, Kmiecik S (2018) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 35(4): 694–695.

Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8): 747–748.

Loaiza-Cano V, Monsalve-Escudero L, Filho C, Martinez-Gutierrez M, Sousa D (2020) Antiviral role of phenolic compounds against dengue virus: A review. Biomolecules 11(1): 11.

Low Z, OuYong B, Hassandarvish P, Poh C, Ramanathan B (2021) Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep 11(1): 21221.

Mangas-Sanjuan V, González-Alvarez M, Gonzalez-Alvarez I, Bermejo M (2010) Drug penetration across the blood–brain barrier: an overview. Ther Del 1(4): 535–562.

Modrow S, Falke D, Truyen U, Schätzl H (2013) Viruses with single-stranded, positive-sense RNA genomes. Mol Vir 9(12): 185–349.

Morris G, Lim-Wilby M (2008) Molecular docking. Met Mol Bio 443(8): 365–382.

Ninfali P, Antonelli A, Magnani M, Scarpa E (2020) Antiviral properties of flavonoids and delivery strategies. Nutrients 12(9): 2534.

Parikesit AA (2018) Introductory Chapter: The Contribution of Bioinformatics as Blueprint Lead for Drug Design. In Ivana Glavic (Ed.), Molecular Insight of Drug Design (p. 7). InTech.

Parikesit AA, Nurdiansyah R (2021) Natural products repurposing of the H5N1-based lead compounds for the most fit inhibitors against 3C-like protease of SARS-CoV-2. J Pharm Pharmacogn Res 9(5): 730–745.

Poh MK, Yip A, Zhang S, Priestle JP, Ma NL, Smit JM, Schul W (2009) A small molecule fusion inhibitor of dengue virus. Antivir Res 84(3): 260–266.

Qamar M, Ashfaq U, Tusleem K, Mumtaz A, Tariq Q, Goheer A, Ahmed B (2017) In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach. Pak J Pharm Sci 30(6): 2119–2137.

Rajapakse S, Rodrigo C, Rajapakse A (2012) Treatment of dengue fever. Infect Drug Resist 5(1): 103–112.

Schaefer T, Panda P, Wolford R (2021) Dengue Fever. Treasure Island (FL): StatPearls Publishing.

Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(7): 363–367.

Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia A R, Efferth T, Schwarz W (2014) Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80(2-3): 177–182.

Shiloputra AF, Parikesit AA, Darmawan JT, Pricillia V, Turista DDR, Ansori, ANM (2021) An overview of the curcumin-based and allicin bioactive compounds as potential treatment to SARS-CoV-2 with structural bioinformatics tools. J Tek Lab 10(2): 59–67.

Surai P (2015) Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 4(1): 204–247.

Tantawichien T, Thisayakorn U (2017) Dengue. Negl Trop Dis- South Asia 5(10): 329–348.

Tian W, Chen C, Lei X, Zhao J, Liang J (2018a) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(1): 363–367.

Tian Y, Zhou Y, Takagi T, Kameoka M, Kawashita N (2018b) Dengue virus and its inhibitors: A brief review. Chem Pharm Bull (Tokyo) 66(3): 191–206.

Verma R, Jatav V, Sharma S (2015) Identification of inhibitors of dengue virus (DENV1, DENV2 and DENV3) NS2b/NS3 serine protease: A molecular docking and simulation approach. Asian J Pharm Clin Res 8(1): 287–292.

Vicente C, Herbinger K, Fröschl G, Malta Romano C, de Souza Areias Cabidelle A, Cerutti Junior C (2016) Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infect Dis 16(1): 320.

Vora J, Patel S, Athar M, Sinha S, Chhabria MT, Jha PC, Shrivastava N (2019) Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. J Biomol Struct Dyn 38(6): 1726–1740.

Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G (2020) Research progress of the antiviral bioactivities of natural flavonoids. Nat Prod Bioprospect 10(5): 271–283.

Wang N, Huang C, Dong J, Yao Z, Zhu M, Deng Z (2017) Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Adv 7(31): 19007–19018.

Weber C, Sliva K, von Rhein C, Kümmerer B, Schnierle B (2015) The green tea catechin, epigallocatechin gallate, inhibits chikungunya virus infection. Antiviral Res 113(1): 1–3.

Wessel M, Mente S (2001) Chapter 25. ADME by computer. Annu Rep Med Chem 36(1): 257–266.

WHO – World Health Organization (2009) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control, pp. 10–11.

WHO – World Health Organization (2022) Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [Consulted 24 February 2022].

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(1): 5–14.

Yan A, Wang Z, Cai Z (2008) Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int J Mol Sci 9(10): 1961–1976.

Yennamalli R, Subbarao N, Kampmann T, McGeary R, Young P, Kobe, B (2009) Identification of novel target sites and an inhibitor of the dengue virus E protein. J Comput Aided Mol Des 23(6): 333–341.

Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa M, AbuBakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8(1): 560.

Zarei M, Abidin N, Auwal S, Chay S, Abdul Haiyee Z, Md Sikin A, Saar N (2019) Angiotensin converting enzyme (ACE)-peptide interactions: Inhibition kinetics, in silico molecular docking and stability study of three novel peptides generated from palm kernel cake proteins. Biomolecules 9(10): 569

© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)