J. Pharm. Pharmacogn. Res., vol. 10, no. 5, pp. 800-811, September-October 2022.
DOI: https://doi.org/10.56499/jppres22.1392_10.5.800
Original Article
Acute oral toxicological evaluation in Wistar rats of interruptin-rich extract from Cyclosorus terminans and its in vitro antidiabetic potential
[Evaluación toxicológica oral aguda en ratas Wistar del extracto de Cyclosorus terminans rico en interruptina y su potencial antidiabético in vitro]
Sujinda Songtrai1,2, Kwanchanok Dejyong3, Sireewan Kaewsuwan1,2*
1Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90110, Thailand.
2Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90110, Thailand.
3Laboratory Animal Facility Unit, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
*E-mail: songsri.k@psu.ac.th
Abstract
Context: Interruptins A and B derivatives from edible fern Cyclosorus terminans have been reported properties including anti-bacterial, anti-cancer, anti-oxidation, anti-inflammatory, and antidiabetic activities. Unfortunately, studies on its safety are still scarce.
Aims: To evaluate the acute oral toxicity of interruptin-rich extract (IRE) from C. terminans in Wistar rats and examine the antidiabetic potential of IRE in vitro.
Methods: IRE was evaluated cytotoxicity by MTT assay and potency of glucose consumption in hepatocyte and skeletal muscle cells. IRE was evaluated for acute toxicity in Wistar rats by following OECD 420 guidelines. Wistar rats were single oral administrated of 2000 mg/kg IRE and further observed for 14 days. LCMS was assessed for verifying IRE absorption into the bloodstream. Hematological, biochemical parameters and microscopic examination of heart, liver and kidney were evaluated.
Results: IRE demonstrated no cytotoxicity toward hepatocytes and skeletal muscle cells and facilitated glucose consumption into cells. In the acute toxicity study, on day 14, after a single oral administration of 2000 mg/kg IRE, no mortality and behavioral alterations. There was no change in metabolic parameters. Histopathology of heart, liver and kidney showed normal architecture.
Conclusions: Thus, LD50 of IRE was considered superior to 2000 mg/kg. Hence the extract can be utilized safely and could provide a capability for diabetic control.
Keywords: acute toxicity; antidiabetic; Cyclosorus terminans; histopathology; Wistar rats.

Resumen
Contexto: Se han informado propiedades de los derivados de las interruptinas A y B del helecho comestible Cyclosorus terminans, que incluyen actividades antibacterianas, anticancerígenas, antioxidantes, antiinflamatorias y antidiabéticas. Desafortunadamente, los estudios sobre su seguridad aún son escasos.
Objetivos: Evaluar la toxicidad oral aguda del extracto rico en interruptina (IRE) de C. terminans en ratas Wistar y examinar el potencial antidiabético de IRE in vitro.
Métodos: Se evaluó la citotoxicidad de IRE mediante ensayo MTT y la potencia de consumo de glucosa en hepatocitos y células de músculo esquelético. Se evaluó la toxicidad aguda de IRE en ratas Wistar siguiendo las directrices de la OCDE 420. A ratas Wistar se les administró por vía oral una sola dosis de 2000 mg/kg de IRE y se observaron durante 14 días. Se evaluó mediante LCMS para verificar la absorción de IRE en el torrente sanguíneo. Se evaluaron parámetros hematológicos, bioquímicos y examen microscópico de corazón, hígado y riñón.
Resultados: IRE no demostró citotoxicidad hacia los hepatocitos y las células del músculo esquelético y facilitó el consumo de glucosa en las células. En el estudio de toxicidad aguda, el día 14, tras una única administración oral de 2000 mg/kg IRE, no hubo mortalidad ni alteraciones del comportamiento. No hubo cambios en los parámetros metabólicos. La histopatología de corazón, hígado y riñón mostró una arquitectura normal.
Conclusiones: Así, la DL50 de IRE se consideró superior a 2000 mg/kg. Por lo tanto, el extracto se puede utilizar de forma segura y proporcionaría una capacidad para el control de la diabetes.
Palabras Clave: toxicidad aguda; antidiabético; Cyclosorus terminans; histopatología; ratas Wistar.

Citation Format: Songtrai S, Dejyong K, Kaewsuwan K (2022) Acute oral toxicological evaluation in Wistar rats of interruptin-rich extract from Cyclosorus terminans and its in vitro antidiabetic potential. J Pharm Pharmacogn Res 10(5): 800–811. https://doi.org/10.56499/jppres22.1392_10.5.800
References
Aronoff LS, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17: 183–190.
Canter PH, Ernst E (2004) Herbal supplement use by persons aged over 50 years in Britain: Frequently used herbs, concomitant use of herbs, nutritional supplements and prescription drugs, rate of informing doctors and potential for negative interactions. Drugs Aging 21: 597–605.
Chadt A, Al-Hasani H (2020) Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch – Eur J Physiol 472: 1273–1298.
Chaiwong S, Puttarak P, Kaewsuwan S (2018) Anti Propionibacterium acnes activity, HPLC method validation for simultaneous analysis and extraction of coumarins from the fern Cyclosorus terminans. Lat Am J Pharm 37: 1791–1797.
Chaiwong S, Puttarak P, Sretrirutchai S, Kaewsuwan S (2019) In vitro anti-inflammatory and antioxidative activities of isolated interruptins from Cyclosorus terminans. Lat Am J Pharm 38: 1677–1682.
Chokshi D (2007) Subchronic oral toxicity of a standardized white kidney bean (Phaseolus vulgaris) extract in rats. Food Chem Toxicol 45: 32–40.
Chumsuwan N, Khongkow P, Kaewsuwan S, Kanokwiroon K (2022) Interruptin C, a radioprotective agent, derived from Cyclosorus terminans protect normal breast MCF-10A and human keratinocyte HaCaT cells against radiation-induced damage. Molecules 27: 3298.
Davis ME, Bredt ND (1994) Renal methods for toxicity. In: Hayes AWC (eds), Principles and methods of toxicology. New York: Raven Press, pp 871.
DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32: S157–S163.
Gayathri GA, Gomathi M (2016) Review on enhancement of glucose uptake and up-regulation of glucose transporters by antidiabetic medicinal plants. Asian J Pharm Clin Res 9: 34–39.
Iozzo P, Hallsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J, Nuutila P (2003) Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. J Clin Endocrinol Metab 88: 2055–2060.
ISO 10993-5 (2009) Biological evaluation of medical devices. Part 5: tests for in vitro cytotoxicity. International Organization for Standardization, Geneva, Switzerland.
Kaewsuwan S, Plubrukarn A, Utsintong M, Kim SH, Jeong JH, Cho JG, Park SG, Sung JH (2016) Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells. Mol Med Rep 13: 2078–2086.
Kaewsuwan S, Yuenyongsawad S, Plubrukarn A, Kaewchoothong A, Raksawong, A, Puttarak P, Apirug C (2015) Bioactive interruptins A and B from Cyclosorus terminans: Antibacterial, anticancer, stem cell proliferation and ROS scavenging activities. Songklanakarin J Sci Technol 37: 309–317.
Karlsson HKR, Ahlsen M, Zierath JR, Wallberg-Henriksson H, Koistinen HA (2006) Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes 55: 1283–1288.
Kelley D, Mitrakou A, Marsh H, Schwenk F, Benn J, Sonnenberg G, Arcangeli M, Aoki T, Sorensen J, Berger M (1988) Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest 81: 1563–1571.
Kumboonruang N (2009) Fern diversity at Silaphet waterfall, Pua district, Nan province”, Master thesis, Graduate School, Srinakharinwirot University, Bangkok, Thailand.
Li J, Feng J, Wei H, Liu Q, Yang T, Hou S, Hao Y, Zhang B, Yang C (2018) The aqueous extract of Gynura divaricata (L.) DC. improves glucose and lipid metabolism and ameliorates type 2 diabetes mellitus. J Evid Based Complement Altern Med 2018: 8686297.
May LD, Lefkowitch JH, Kram MT, Rubin DE (2002) Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med 136: 449–452.
Ngo LT, Okogun JI, Folk WR (2013) 21st century natural product research and drug development and traditional medicines. Nat Prod Rep. 30(4): 584–592.
OECD (2001) OECD Guideline for Testing of Chemicals: Acute Oral Toxicity – Fixed Dose Procedure. Test No. 420. Organisation for Economic Co-operation and Development, Paris, France.
Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12: 66–71.
Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116: 1793–1801.
Sinnott SJ, McHugh S, Whelton H, Layte R, Barron S, Kearney PM (2017) Estimating the prevalence and incidence of type 2 diabetes using population level pharmacy claims data: A cross-sectional study. BMJ Open Diabetes Res Care 5: e000288.
Soyinka OO, Adeniyi FA, Ajose OA (2007) Biochemical parameters of liver function in artisans occupationally exposed to “vat dyes”. Indian J Occup Environ Med 11: 76–79.
Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev 9: 463–475.
Surapanthanakorn S, Phadoongsombut N, Wattanapiromsakul C, Reanmongko W (2017) In vivo evaluation of analgesic and antipyretic activities of piceatannol-rich extract from Senna garrettiana heartwood. Songklanakarin J Sci Technol 39: 589–599.
Tagawa M, Iwatsuki K. (1988) Pteridophytes. Part 3: Blechnaceae to Athyriaceae. In: Smitinand T, Larsen K (eds), Flora of Thailand. The Auspices of Danida. Bangkok: The Chutima press, pp 297–480.
UN (2017) Globally Harmonized System of Classification and Labelling of Chemicals (GHS). 7th edn. New York and Geneva.
Vigneshwar R, Arivuchelvan A, Mekala P, Imayarassi K (2021) Sex-specific reference intervals for Wistar albino rats: Hematology and clinical biochemistry. Indian J Anim Health 60: 58–65.
WHO (2005) National policy on traditional medicine and regulation of herbal medicines. Report of WHO global survey”, World Health Organization, Geneva, Switzerland; p. 25–50.
© 2022 Journal of Pharmacy & Pharmacognosy Research (JPPRes)